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Recognition of benzene, toluene and xylene using TGS array
integrated with linear and non-linear classifier
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Abstract

Three volatile organic compounds (VOCs): benzene, toluene and xylene were measured with an array of six Taguchi gas sensors in the air
with variable humidity content. The recognition of single compounds was performed, based on measurement results. The principal component
analysis (PCA) pointed at humidity as the main classification factor in the measurement data set. The linear discriminant analysis (LDA)
was applied to overcome this drawback and enforce classification with respect to benzene, toluene or xylene. It was shown that discriminant
function analysis (DFA), which is an LDA method allowed for 100% success rate in test samples recognition of benzene. It did not allow for
accurate recognition of test samples of toluene or xylene. Following, the non-linear classifier, radial basis function neural network (RBFNN)
was applied. A specific configuration of input ‘s was found, which provided for successful recognition of each single compound: benzene,
toluene or xylene in air with variable humidity content.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The pollution of atmosphere as a result of human activi-
ties is recently one of the most important problems all over
the world. This fact stimulates the development of mea-
surement methods and techniques for air pollutants moni-
toring. Among various analytical devices, gas sensors are
particularly useful, first of all in the case of in situ, on line
or remote measurements. The gas sensors may operate on
the base of different physical and chemical methods. For
example, in a great number of detectors for toxic and in-
flammable gases semiconducting properties of metal oxides
are explored. These devices are relatively small, inexpen-
sive (compared with optical or electrochemical gas sensors),
convenient in use and sensitive. They also have disadvan-
tages, such as considerably large power consumption, lack
of reproducibility, long-term stability (drift), sensitivity to
poisoning and ambient conditions, and insufficient selectiv-
ity. In order to improve reliability of semiconducting gas
sensors and broadening their applications different methods
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are proposed. They are based on: (1) doping (the role of
dopants and additives is to cause the increase of surface ad-
sorption or to improve electrical and mechanical properties
of gas sensor)[1] (2) filters (they reduce the sensitivity to
interfering gases)[2] (3) catalysts (catalytic metals and ox-
ides lead to the decrease in the operation temperature and
to the enhancement of sensitivity and selectivity to different
gases)[3] (4) surface modification[4] (5) different operat-
ing temperature of the sensor[5] (6) dynamic mode of op-
eration (“time dependent” response of the sensor, the mea-
suring signal is modulated by different factors)[6] (7) mul-
tisensor arrays, which combine sensor elements having dif-
ferent sensitivity to each component of the mixture[7], and
(8) pattern recognition techniques[8–12].

In this paper, we investigate the classification problem of
three single volatile organic compounds (VOCs): benzene,
toluene and xylene in air containing one of these compounds
and various amounts of water vapour, based on sensor array
measurements. These compounds were chosen because they
belong to the group of most dangerous air pollutants. Their
recognition is very important due to differences in toxicity of
these compounds and their impact on human health and the
environment. Selected feature extraction and pattern recog-
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nition techniques were employed to solve the classification
problem. We used principal component analysis (PCA), lin-
ear discriminant function (LDF) and radial basis function
neural network (RBFNN).

2. Experimental

In our study, sensor array was used for the recognition
of benzene, toluene and xylene in air with variable humid-
ity content. It consisted of six Taguchi gas sensors from
Figaro Engineering, Japan, which were chosen because
of their large commercialization, relatively low price and
high sensitivity. The following TGS were applied in this
work: TGS800, TGS822, TGS824, TGS825, TGS880, and
TGS883. The experimental set-up was shown inFig. 1.

The sensor array was mounted in a flow type gas cham-
ber equipped with two ports for the gases (inlet and outlet)
and a head with wires. The function of sensor array was
responding to gases and transformation of chemical infor-
mation into the electrical signal. The sensor array was con-
nected to voltage supplier and measuring device. Both were
regarded as separate elements of the measurement system.

The measuring device consisted of reference resistors,
digital multimeter with data acquisition card and PC. We
used the potential divider circuit, each connected to 12 V
circuit supply. The sensors responses were measured in the
form of the voltage of the reference resistors. A digital mul-
timeter with data acquisition card was used to measure and
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atmospheric
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pump
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Fig. 1. The structure of the experimental set-up.

transfer the change of output voltage to PC. TGS were op-
erated in working temperature of approximately 350◦C, by
applying constant 5 V supply to heaters.

The chamber was connected by a teflon gas line with the
installation for the preparation of zero air (purified ambient
air) and gas mixtures (samples). Zero air came from the gen-
erator made by Horiba. This device consisted of the com-
pressor and cartridges filled with silica gel, activated car-
bon, soda lime and molecular sieves. Ambient air passing
through these cartridges was purified. Water vapor was not
completely removed from the zero air by silica gel, but its
influence on electrical conductivity of semiconductor was
negligible. The zero air generator was designed for the dy-
namic and continuous supply of pure air. The gas flow rate
was controlled by a mass flow controller.

Gas mixtures were prepared by an evaporation method.
A desired amount of water and a volatile organic compound
was injected as a liquid into a glass coil and then vaporized
in a stream of pure air. This gas mixture was collected in
a Tedlar bag. The flow rate of air was precisely adjusted.
Therefore, the concentration of volatile organic compound
in the bag was known. Finally, the gas mixture from the
Tedlar container was pumped into the chamber and the gas
flew over the sensor array at constant flow rate 2 dm3 min−1.
Each sensor response was measured after four minutes from
the start of mixture flow. Between exposures, the sensor
array was kept in a stream of pure air.

Sensor array responses were measured for benzene,
toluene and xylene in air. The concentration of these
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compounds was changed from 3 to 73 ppm. The air hu-
midity content was also changed. We performed measure-
ments at four air humidity levels (dry air, 4 g(H2O) m−3,
10 g(H2O) m−3, water vapor saturated air).

3. Results and discussion

3.1. Feature extraction with PCA

The experimental data was examined with PCA in order
to visualize response patterns in the feature space of princi-
pal components. PCA is a coordinate transformation, which
reduces the redundancy within the data by creating a new
series of components. The resulting components are often
more interpretable than the original ones. Usually, the first
two or three principal components account for most of the
variance in the data set. Therefore, PCA may be used as
dimensionality reduction technique. To begin the transfor-
mation, the covariance matrixC or the correlation matrix of
the original data is found. Using the covariance matrix, the
eigenvaluesλi are obtained from

|C − λiI| = 0 (1)

wherei = 1,2, . . . , n andn is the total number of original
components, andI is an identity matrix. The eigenvalues
are equal to the variance of each corresponding component.
The eigenvectorsei define the axes of the components and
are obtained from

(C − λiI)ei = 0 (2)

The principal components are then given as

PC= TD (3)

Fig. 2. PCA of 72 patterns from the experimental data set; all sensors used for calculation of principal components; marking for VOCs.

whereD is the digital number matrix of the original data,
andT is the transformation matrix given by

T =




e11 · · · e1n

...
. . .

...

en1 · · · enn


 (4)

PCA generated components are uncorrelated and ordered
by decreasing variance. The correlation matrix of the trans-
formed data is a diagonal matrix. Its elements are com-
prised of eigenvalues. The transformed data points are linear
combinations of original data values weighted by eigenvec-
tors. Each column of the eigenvector matrix represents the
weights applied to the data point of the corresponding data
vector to build each respective principal component. The
percentage of the total variance in each of the components
is given by

variancei (%) = λi100∑n
k=1λk

(5)

The first component has the maximum signal-to-noise ra-
tio and the largest percentage of the total variance. Each
subsequent component contains the maximum variance for
any axes orthogonal to the previous component.

PCA is commonly applied as an “unsupervised” linear
technique of feature extraction, which analyses the struc-
ture inherent in the data. The plot of response patterns in
the space of major principal components is frequently con-
sidered as the first indicator of success or failure in data
classification task[8,10,11,13].

The PCA algorithm employed in the study usedprincomp
function implemented in MATLAB[15].
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Fig. 3. PCA of 72 patterns from the experimental data set; all sensors used for calculation of principal components; marking for air humidity level.

The basic measurement data set consisted of 72 pattern
vectors collected using sensor array (TGS800, TGS822,
TGS824, TGS825, TGS880, and TGS883). It consisted of
three groups of pattern vectors, 24 elements per group.
Each group contained measurement results obtained for one
single compound in air, in full concentration range, at four
humidity levels. PCA was employed on six dimensional
pattern vectors (all sensors considered) and on five dimen-
sional pattern vectors (humidity sensor TGS883 excluded).
These two cases were analyzed, as our previous work[16]

Fig. 4. PCA of 72 patterns from the experimental data set; humidity sensor excluded prior to calculation of principal components, marking for VOCs.

indicated that including humidity sensor responses in ex-
perimental data set influenced the VOC classification per-
formance. Specifically, it was shown to improve alcohols
classification rate. Prior to the analysis pattern vectors were
centered and normalized.Figs. 2 and 3visualize pattern
space for complete set of sensors, using first two princi-
pal components. Different marking was adopted in these
two figures although they visualize exactly the same data.
The marking used inFig. 2 refers to three VOCs: ben-
zene, toluene and xylene, while the marking used inFig. 3
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Fig. 5. PCA of 72 patterns from the experimental data set; humidity sensor excluded prior to calculation of principal components; marking for air
humidity level.

refers to four air humidity levels (dry air, 4 g(H2O) m−3,
10 g(H2O) m−3, water vapor saturated air).

As could be seen inFig. 2, four distinct groups of points
were formed, but clearly these did not indicate VOCs of in-
terest. From the comparison ofFigs. 2 and 3, it appeared
that four data point groups represented four levels of water
vapor content in air. Apparently, the predominant fraction
of variance in experimental data set (PC1 91.6%) was asso-
ciated with the humidity content in the measured gas. The
inherent data structure pointed at the water vapor, not VOCs
as the main discrimination factor for our data set.

Based onFigs. 4 and 5, removing humidity sensor re-
sponses from data set did not induce positive regrouping in
feature space. Distinct groups of points for benzene, toluene
and xylene were not formed. It could only be noticed that
the main factor (PC1 95.35%) less clearly indicated gas
mixture humidity change, as different humidity groupings
overlapped. Nevertheless, the water vapor related informa-
tion was strongly represented in measurements of other gas
sensors.

3.2. Linear discriminant analysis with DFA

Considering PCA results, the discriminant analysis was
employed by means of discriminant function analysis
(DFA). It is a commonly used technique for data classifi-
cation and dimensionality reduction. The prime difference
between LDA and PCA is that PCA does more of feature
classification and LDA does data classification. In PCA,
the shape and location of the original data sets changes
when transformed to a different space whereas LDA doesn’t
change the location but only tries to provide more class

separability and draw a decision region between given
classes.

Our aim was a good discrimination of classes, so the
class-dependent transformation was applied for data trans-
formation and classification. This approach maximizes the
ratio of between-class variance to the within-class variance
in any particular data set thereby guaranteeing maximal sep-
arability. A set of feature vectorsai is searched for, that
maximize the following criterion

J = aTSBa

aTSwa
(6)

wherei = 1, . . . , L and L is the number of classes. The
normalization constraint is imposed on the criterion evalua-
tion, that class-centralized vectors in the transformed space
are uncorrelated. The within class scatterSW is given by

SW =
L∑

i=1

ni

n
Ci (7)

wherei = 1, . . . , L andCi are covariance matrices of each
class (withni samples). The in between class scatter is given
by

SB =
n∑

i=1

ni

n
(mi − m)(mi − m)T (8)

wheremi is the class mean andm the whole data set mean.
The solution obtained by maximizing criterionEq. (6),

defines the axes of the transformed space. The rank ofSB
is at mostL − 1, therefore the projection will be onto a
space of at mostL − 1 dimensions. Once the transforma-
tions are completed using the LDA transforms, Euclidean
distance or RMS distance is used to classify data points.
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Fig. 6. Scores plot for LDA classification of 48 element test set; all sensors used to generate discriminant functions.

Thus, forL classes,L Euclidean distances are obtained for
each test point. The smallest Euclidean distance among the
L distances classifies the test vector as belonging to the ad-
equate class[7,9,10,14].

In our analysis a grouping factor was assigned to each
data vector in measurement data set, depending on VOC
it represented. Three grouping factors were used: “a” for
benzene, “b” for xyelne, and “c” for toluene.

The DFA algorithm employed in the study was thelda
function implemented inR [17].

Fig. 7. Scores plot for LDA classification of 48 element test set; humidity sensor excluded prior to calculation of discriminant functions.

The DFA was applied to the same data set, for which
PCA was performed.Fig. 6 visualizes separation of pat-
tern vectors, using discriminant functions for complete
set of sensors. The graph inFig. 7 shows classification
results, when the humidity sensor measurements were
removed from the data set. Both cases were consid-
ered to see if the enforced classification scheme would
suffer from the humidity oriented classification profile
of the data, strongly exhibited by humidity sensor re-
sponses.
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It was apparent, that in both graphs (Figs. 6 and 7) data
points segregated into two distinct, non-overlapping groups:
one for benzene, one for xylene and toluene together. Also
toluene associated and xylene associated groupings were
formed, but these partially overlapped. It held true irrespec-
tive of including measurements from the humidity sensor in
the data set. Based on results obtained it was anticipated that
benzene could be successfully recognized from toluene and
xylene together, using DFA.

The modified leave-one-out cross validation was applied
for evaluation of DFA discriminatory power. Classicaln-fold
cross validation, for the data set consisting ofn data vectors,
implies that the model is trainedn separate times on all
data, except for one data vector and a prediction is done
for that vector. The left out vector is changed in each run.
The classification errors are accumulated to give the average
error acrossn trials.

Our modification was proposed due to understanding that
DFA has very limited extrapolation attributes and using ex-
treme data vectors for model evaluation in leave-one-out
procedure may unjustifiably suppress the assessment of clas-
sifier performance. It was also recognized that extreme data
vectors should in principle be included in the training data
set, as these determine the space where the developed model
is valid. Therefore in our version of cross validation extreme
data vectors were excluded from testing in leave-one-out
procedure, but these were left in the training set.

The full data set consisted of 72 elements. In a subset of
24 data vectors associated with one compound eight were
extreme vectors, corresponding to minimum and maximum
compound concentrations at four humidity levels. These
eight extreme vectors for each compound i.e. 24 vectors in
total, were excluded from leave-one-out procedure. Remain-
ing 16 vectors for each compound i.e. 48 vectors in total
were tested in leave-one-out procedure. Therefore our pro-
cedure modification resulted in following: In every training
run 71 learning vectors (out of 72) were used, but there were
only 48 runs, as there were 48 vectors to be checked if clas-
sified properly. The DFA classification results for benzene,
toluene and xylene are summarized inTable 1.

The performance columns indicated the number of cor-
rectly classified patterns out of 16 test patterns for each
VOC. Apparently benzene was always discriminated cor-
rectly. Most samples of toluene (15/16) and xylene (15,
14/16) were also classified well. The capability of sensor
array to distinguish among VOCs was recognized, in spite

Table 1
Classification performance of DFA in testing mode for complete set of
sensors and without considering humidity sensor

VOC Performance
(complete set of sensors)

Performance
(without humidity sensor)

Benzene 16/16 16/16
Toluene 15/16 15/16
Xylene 15/16 14/16

of the fact that major variability in the data set was related
to the air humidity level, as shown by PCA. From the point
of view of practical need to recognize toxic benzene (ambi-
ent air concentration standard assigned in Poland[18]) from
significantly less toxic toluene or xylene (ambient air con-
centration standard not assigned in Poland[18]), the DFA
classification performance was satisfying. Nevertheless, our
linear discriminator occasionally gave faulty classification
of test samples for the two target gases: toluene and xylene.

3.3. Non-linear discriminant analysis—RBF

The next step of advancement in classification methods
to linear discriminators are non linear classifiers. The non
linear discriminant analysis is willingly performed with ra-
dial basis functions (RBF), which is simple and fast to im-
plement algorithm. In supervised classification applications
RBF is used to construct nonlinear discrimination function
for each class. In theory RBF is an absolute classifier i.e. it
may generate as many classes as the number of input vec-
tors. On the other hand, this exactness may lead to poor
generalization in pattern recognition problems[11,14,19].

RBF approach was implemented using radial basis neural
network. In general, it consists of two layers: a hidden radial
basis layer, and an output linear layer. The transfer function
of radial basis neuron is

f = e−(||w−p||b)2
(9)

where w is the weight vector of the neuron,p the input
vector andb is the bias. Each bias in the first layer is set to
0.8326/spread. This gives radial basis functions that cross
0.5 at weighted inputs of±spread. It determines the width
of an area in the input space to which each neuron responds.
Spread should be large enough that neurons respond strongly
to overlapping regions of the input space. The second, output
layer of linear neurons, calculates the linear combination of
outputs from radial basis neurons.

If we present an input vector to a RBF neural network,
each neuron in the radial basis layer will output a value
according to how close the input vector is to each neuron’s
weight vector. Radial basis neurons with weight vectors quite
different from the input vectorp have outputs near zero.
These small outputs have only a negligible effect on the
linear output neurons. In contrast, a radial basis neuron with
a weight vector close to the input vectorp produces a value
near 1. If a neuron has an output of 1 its output weights
in the second layer pass their values to the linear neurons
in the second layer. The classification problem is solved
successfully if radial neurons are present in the network,
which have weights close to data vectors from each class
and their linear transformation provides for a response close
to the value considered as the identifier of appropriate class
[15].

The RBF neural network employed in the study utilized
the newrb function implemented in MATLAB. The function
newrb iteratively creates a radial basis network by adding
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Table 2
Optimum classification performance of RBF neural network when input
features were sensors

VOC Configuration of sensors

I II III IV V VI VII

Benzene 14/16 15/16 15/16 16/16 15/16 9/16 15/16
Toluene 15/16 16/16 15/16 16/16 16/16 8/16 16/16
Xylene 16/16 16/16 15/16 15/16 15/16 12/16 16/16

Spread 0.55 1.35 0.12 0.24 0.4 0.24 0.22

one neuron at a time. Neurons are added to the network
until the sum-squared error falls beneath an error goal or a
maximum number of neurons has been reached[15].

In our network the output layer consisted of one neuron.
The network was expected to respond with (−1) for the
data vectors associated with benzene, 0 for the data vectors
associated with tolune and 1 for xylene.

The RBF was applied to the same data set as did PCA and
DFA. Modified leave-one-out cross-validation was used to
obtain the training and classification performance for neural
network, as implemented before for the DFA validation. In
each procedure run, one measurement vector was excluded
from 72 element data set and neural network was trained on
remaining 71 data points. The excluded data vector was then
classified and the accuracy of classification was checked.
There were 48 runs of leave-one-out cross-validation proce-
dure as there were 48 non-extreme vectors to be checked if
classified properly. Measurements for minimum and max-
imum concentrations of each compound at four humidity
levels (24 in total) were not considered as testing vectors.

It has been reported in literature that once the classifier
has been chosen, an optimum classification performance de-
pends on the selection of adequate input features[7]. At first,
we investigated the possibility of using sensors responses
as input features. We considered following configurations
of sensors as inputs to the RBFNN in search for the best
classification performance: (I) TGS800, TGS822, TGS824,
TGS825, TGS880, and TGS883 (six sensors) (II) TGS800,
TGS822, TGS824, TGS825, and TGS880 (five sensors: hu-
midity sensor excluded) (III) TGS822, TGS824, TGS825,
and TGS880 (IV) TGS800, TGS824, TGS825, and TGS880
(V) TGS800, TGS822, TGS825, and TGS880 (VI) TGS800,
TGS822, TGS824, and TGS880 (VII) TGS800, TGS822,
TGS824, and TGS825 (four element combinations out of
five non-humidity sensors). A series of simulations were
done for every configuration of input vectors searching for
the RBF spread, which minimized the number of erroneous
classifications. The optimum RBF network performance and
associated spread values, when sensors were considered as
inputs, are reported inTable 2.

None classification was fully successful when sensor re-
sponse were used as neural network input features (Table 2).
One could observe that humidity sensor impaired classifi-
cation of benzene, toluene and xylene, as the results im-
proved after removing it from the feature set (I versus oth-

Table 3
Optimum classification performance of RBF neural network when inputs
were principal components calculated for complete set of sensors (six) or
calculated for set of sensors, without humidity sensor (five)

VOC Configuration of principal components

6/6 5/6 4/6 5/5 4/5

Benzene 15/16 16/16 16/16 16/16 16/16
Toluene 16/16 15/16 14/16 16/16 16/16
Xylene 16/16 16/16 16/16 15/16 16/16

Spread 1.50 1.30 1.05 0.95 1.15

The principal components eliminated were those, explaining minimum
variance.

ers). Therefore, it was not considered further in five and
four element sensor configurations. TGS825 appeared to be
the key sensor in our classification problem (VI). When re-
moved from feature set, classification performance rapidly
broke. Remaining sensor configurations resulted in one or
two misclassifications for the whole test data set, which was
comparable to DFA performance. Further reduction of in-
put vectors dimensionality, below four features resulted in
unacceptable classification errors, so these results were not
presented.

As we have not fully succeeded in classification of ben-
zene, toluene and xylene using directly sensor responses for
neural network inputs, it was proposed to preprocess the data
with feature extraction method and apply the extracted fea-
tures for neural network inputs. We took advantage of prin-
cipal components calculated previously and we used them
as the RBF network inputs. The search for an adequate set
of principal components started from all principal compo-
nents calculated for a set of sensors including humidity sen-
sor (six components). Then, all principal components cal-
culated for a set of sensors without humidity sensor were
used (five components). In the next step, components ex-
plaining minimum variance were eliminated from those fea-
ture spaces and so on. A series of simulations were done for
every configuration of input vectors in search for the RBF
spread, which minimized the number of erroneous classifi-
cations and results are reported inTable 3.

As listed in Table 3, only one configuration of princi-
pal components used as network inputs allowed for 100%
success rate in classification of each single compound: ben-
zene, toluene and xylene. It was the case of four principal
components obtained from PCA on five gas sensors (4/5).
RBF classification performance for the rest of cases shown
in Table 3was comparable to using five or four sensors as
neural network input features or applying DFA.

4. Conclusions

The recognition task of three single VOCs: benzene,
toluene and xylene in air has been investigated. We have
shown that simple measurement system consisting of an
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array of commercially available, cheap TGS sensors, cou-
pled with appropriate classifier was capable of solving this
classification task. As presented in the article, simple linear
discriminator DFA was 100% successful in recognition of
benzene, in concentration range 3–73 ppm, whatever the
humidity of air. This classifier would be sufficient for the
applications targeted at recognition of toxic benzene from
less toxic toluene or xylene. In order to accurately recog-
nize each VOC the non linear classifier has been employed.
It was shown that RBF neural network faultlessly discrimi-
nated each single compound: benzene, toluene and xylene.
We showed that in order to reach this classification goal,
the defined set of principal components had to be used for
a neural network input.
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