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Abstract

Three volatile organic compounds (VOCSs): benzene, toluene and xylene were measured with an array of six Taguchi gas sensors in the air
with variable humidity content. The recognition of single compounds was performed, based on measurement results. The principal component
analysis (PCA) pointed at humidity as the main classification factor in the measurement data set. The linear discriminant analysis (LDA)
was applied to overcome this drawback and enforce classification with respect to benzene, toluene or xylene. It was shown that discriminant
function analysis (DFA), which is an LDA method allowed for 100% success rate in test samples recognition of benzene. It did not allow for
accurate recognition of test samples of toluene or xylene. Following, the non-linear classifier, radial basis function neural network (RBFNN)
was applied. A specific configuration of input ‘s was found, which provided for successful recognition of each single compound: benzene,
toluene or xylene in air with variable humidity content.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction are proposed. They are based on: (1) doping (the role of
dopants and additives is to cause the increase of surface ad-
The pollution of atmosphere as a result of human activi- sorption or to improve electrical and mechanical properties
ties is recently one of the most important problems all over of gas sensorl] (2) filters (they reduce the sensitivity to
the world. This fact stimulates the development of mea- interfering gases)?] (3) catalysts (catalytic metals and ox-
surement methods and techniques for air pollutants moni-ides lead to the decrease in the operation temperature and
toring. Among various analytical devices, gas sensors aretg the enhancement of sensitivity and selectivity to different
particularly useful, first of all in the case of in situ, on line  gases)3] (4) surface modificatiofi4] (5) different operat-
or remote measurements. The gas sensors may operate ojpg temperature of the sensi] (6) dynamic mode of op-
the base of different physical and chemical methods. For eration (“time dependent” response of the sensor, the mea-
example, in a great number of detectors for toxic and in- suring signal is modulated by different factof6) (7) mul-
flammable gases semiconducting properties of metal oxidestisensor arrays, which combine sensor elements having dif-
are explored. These devices are relatively small, ineXpeﬂ-ferent Sensitivity to each Component of the mixtmh and
sive (compared with optical or electrochemical gas sensors),(8) pattern recognition techniqug&-12].
convenient in use and sensitive. They also have disadvan- |n this paper, we investigate the classification problem of
tages, such as considerably large power consumption, lackhree single volatile organic compounds (VOCs): benzene,
of reproducibility, long-term stability (drift), sensitivity to  toluene and xylene in air containing one of these compounds
poisoning and ambient COﬂditiOﬂS, and insufficient selectiv- and various amounts of water vapour, based on sensor array
ity. In order to improve reliability of semiconducting gas measurements. These compounds were chosen because they
sensors and broadening their applications different methodshelong to the group of most dangerous air pollutants. Their
recognition is very important due to differences in toxicity of
* Corresponding author. Tel+48-713202500; fax:-48-713203599. €S compounds and their impact on human health and the
E-mail address: monika.maciejewska@pwr.wroc.pl (M. Maciejewska). €nvironment. Selected feature extraction and pattern recog-
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nition techniques were employed to solve the classification transfer the change of output voltage to PC. TGS were op-
problem. We used principal component analysis (PCA), lin- erated in working temperature of approximately 380 by
ear discriminant function (LDF) and radial basis function applying constant 5V supply to heaters.
neural network (RBFNN). The chamber was connected by a teflon gas line with the
installation for the preparation of zero air (purified ambient
air) and gas mixtures (samples). Zero air came from the gen-
2. Experimental erator made by Horiba. This device consisted of the com-
pressor and cartridges filled with silica gel, activated car-
In our study, sensor array was used for the recognition bon, soda lime and molecular sieves. Ambient air passing
of benzene, toluene and xylene in air with variable humid- through these cartridges was purified. Water vapor was not
ity content. It consisted of six Taguchi gas sensors from completely removed from the zero air by silica gel, but its
Figaro Engineering, Japan, which were chosen becausenfluence on electrical conductivity of semiconductor was
of their large commercialization, relatively low price and negligible. The zero air generator was designed for the dy-
high sensitivity. The following TGS were applied in this namic and continuous supply of pure air. The gas flow rate
work: TGS800, TGS822, TGS824, TGS825, TGS880, and was controlled by a mass flow controller.
TGS883. The experimental set-up was showkit 1. Gas mixtures were prepared by an evaporation method.
The sensor array was mounted in a flow type gas cham-A desired amount of water and a volatile organic compound
ber equipped with two ports for the gases (inlet and outlet) was injected as a liquid into a glass coil and then vaporized
and a head with wires. The function of sensor array was in a stream of pure air. This gas mixture was collected in
responding to gases and transformation of chemical infor- a Tedlar bag. The flow rate of air was precisely adjusted.
mation into the electrical signal. The sensor array was con- Therefore, the concentration of volatile organic compound
nected to voltage supplier and measuring device. Both werein the bag was known. Finally, the gas mixture from the
regarded as separate elements of the measurement systemledlar container was pumped into the chamber and the gas
The measuring device consisted of reference resistors,flew over the sensor array at constant flow rate 2 orim—.
digital multimeter with data acquisition card and PC. We Each sensor response was measured after four minutes from
used the potential divider circuit, each connected to 12V the start of mixture flow. Between exposures, the sensor
circuit supply. The sensors responses were measured in tharray was kept in a stream of pure air.
form of the voltage of the reference resistors. A digital mul- ~ Sensor array responses were measured for benzene,
timeter with data acquisition card was used to measure andtoluene and xylene in air. The concentration of these
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Fig. 1. The structure of the experimental set-up.
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compounds was changed from 3 to 73 ppm. The air hu- where D is the digital number matrix of the original data,
midity content was also changed. We performed measure-andT is the transformation matrix given by

ments at four air humidity levels (dry air, 4 g48) m 3,
10 g(HpO) m~3, water vapor saturated air). Lt e

T=|: @

3. Results and discussion épl ' €m

PCA generated components are uncorrelated and ordered
by decreasing variance. The correlation matrix of the trans-

The experimental data was examined with PCA in order formed data is a diagonal matrix. Its elements are com-
to visualize response patterns in the feature space of princi—pr'sed of eigenvalues. The transformed data points are linear

pal components. PCA is a coordinate transformation, which combinations of original data values weighted by eigenvec-

reduces the redundancy within the data by creating a new!tors- Each column of the eigenvector matrix represents the

series of components. The resulting components are oftenweights applied to the data point of the corresponding data

more interpretable than the original ones. Usually, the first VECtOr 1o build each respective principal component. The
two or three principal components account for most of the percentage of the total variance in each of the components

variance in the data set. Therefore, PCA may be used as'S 91ven by
dimensionality reduction technique. To begin the transfor- . %) — A;100
mation, the covariance matr& or the correlation matrix of variance (%) = S

the original data is found. Using the covariance matrix, the ] ) ) )
eigenvalues.; are obtained from _ The first component has the maximum signal-to-noise ra-
IC— a1 =0 (1) tio and the largest percentagg of the totgl variance. Each
subsequent component contains the maximum variance for
wherei = 1,2,...,n andn s the total number of original  any axes orthogonal to the previous component.
components, and is an identity matrix. The eigenvalues PCA is commonly applied as an “unsupervised” linear
are equal to the variance of each corresponding componenttechnique of feature extraction, which analyses the struc-
The eigenvectors; define the axes of the components and ture inherent in the data. The plot of response patterns in

3.1. Feature extraction with PCA

()

are obtained from the space of major principal components is frequently con-
(C — ArjD)e; =0 2) sidered as the first indicator of success or failure in data
o ) classification task8,10,11,13].
The principal components are then given as The PCA algorithm employed in the study ug®ehcomp
PC=TD (3) function implemented in MATLAB[15].
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Fig. 2. PCA of 72 patterns from the experimental data set; all sensors used for calculation of principal components; marking for VOCs.
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Fig. 3. PCA of 72 patterns from the experimental data set; all sensors used for calculation of principal components; marking for air humidity level.

The basic measurement data set consisted of 72 patternndicated that including humidity sensor responses in ex-
vectors collected using sensor array (TGS800, TGS822,perimental data set influenced the VOC classification per-
TGS824, TGS825, TGS880, and TGS883). It consisted of formance. Specifically, it was shown to improve alcohols
three groups of pattern vectors, 24 elements per group.classification rate. Prior to the analysis pattern vectors were
Each group contained measurement results obtained for oneeentered and normalizedkigs. 2 and 3visualize pattern
single compound in air, in full concentration range, at four space for complete set of sensors, using first two princi-
humidity levels. PCA was employed on six dimensional pal components. Different marking was adopted in these
pattern vectors (all sensors considered) and on five dimen-two figures although they visualize exactly the same data.
sional pattern vectors (humidity sensor TGS883 excluded). The marking used irFig. 2 refers to three VOCs: ben-
These two cases were analyzed, as our previous Y&k zene, toluene and xylene, while the marking use#im 3
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Fig. 4. PCA of 72 patterns from the experimental data set; humidity sensor excluded prior to calculation of principal components, marking for VOCs.
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Fig. 5. PCA of 72 patterns from the experimental data set; humidity sensor excluded prior to calculation of principal components; marking for air
humidity level.

refers to four air humidity levels (dry air, 4 gg@) m3, separability and draw a decision region between given
10 g(HO) m~2, water vapor saturated air). classes._ S
As could be seen ifrig. 2, four distinct groups of points Our aim was a good discrimination of classes, so the

were formed, but clearly these did not indicate VOCs of in- class-dependent transformation was applied for data trans-
terest. From the comparison Bfgs. 2 and 3, it appeared formation and classification. This approach maximizes the
that four data point groups represented four levels of water ratio of between-class variance to the within-class variance
vapor content in air. Apparently, the predominant fraction inany particular data set thereby guaranteeing maximal sep-
of variance in experimental data set (PC1 91.6%) was asso-arability. A set of feature vectors; is searched for, that
ciated with the humidity content in the measured gas. The maximize the following criterion

inherent data structure pointed at the water vapor, not VOCs a' Sga

as the main discrimination factor for our data set.

Based onFigs. 4 and 5, removing humidity sensor re-
sponses from data set did not induce positive regrouping in
feature space. Distinct groups of points for benzene, toluene
and xylene were not formed. It could only be noticed that
the main factor (PC1 95.35%) less clearly indicated gas

- a' Swa ©)

wherei = 1, ..., L andL is the number of classes. The
normalization constraint is imposed on the criterion evalua-
tion, that class-centralized vectors in the transformed space
are uncorrelated. The within class scafigr is given by

mixture humidity change, as different humidity groupings n;
overlapped. Nevertheless, the water vapor related informa-SW = ‘ ;Ci (7)
tion was strongly represented in measurements of other gas i=1
sensors. wherei = 1, ..., L andC; are covariance matrices of each
class (withn; samples). The in between class scatter is given
3.2. Linear discriminant analysis with DFA by
. o . i T

Considering PCA results, the discriminant analysis was S8 = Z;(mi —m)(m; —m) (8)

employed by means of discriminant function analysis i=1

(DFA). It is a commonly used technique for data classifi- whereny is the class mean and the whole data set mean.
cation and dimensionality reduction. The prime difference  The solution obtained by maximizing criterideq. (6),
between LDA and PCA is that PCA does more of feature defines the axes of the transformed space. The rarg of
classification and LDA does data classification. In PCA, is at mostL — 1, therefore the projection will be onto a
the shape and location of the original data sets changesspace of at most. — 1 dimensions. Once the transforma-
when transformed to a different space whereas LDA doesn’ttions are completed using the LDA transforms, Euclidean
change the location but only tries to provide more class distance or RMS distance is used to classify data points.
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Fig. 6. Scores plot for LDA classification of 48 element test set; all sensors used to generate discriminant functions.

Thus, forL classes| Euclidean distances are obtained

for ~ The DFA was applied to the same data set, for which

each test point. The smallest Euclidean distance among thePCA was performedFig. 6 visualizes separation of pat-
L distances classifies the test vector as belonging to the adtern vectors, using discriminant functions for complete

equate clas§r,9,10,14].

set of sensors. The graph kig. 7 shows classification

In our analysis a grouping factor was assigned to eachresults, when the humidity sensor measurements were

data vector in measurement data set, depending on

VOCremoved from the data set. Both cases were consid-

it represented. Three grouping factors were used: “a” for ered to see if the enforced classification scheme would

benzene, “b” for xyelne, and “c” for toluene.
The DFA algorithm employed in the study was thila
function implemented iR [17].

suffer from the humidity oriented classification profile
of the data, strongly exhibited by humidity sensor re-
sponses.
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Fig. 7. Scores plot for LDA classification of 48 element test

set; humidity sensor excluded prior to calculation of discriminant functions.
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It was apparent, that in both graphs (Figs. 6 and 7) data of the fact that major variability in the data set was related
points segregated into two distinct, non-overlapping groups: to the air humidity level, as shown by PCA. From the point
one for benzene, one for xylene and toluene together. Alsoof view of practical need to recognize toxic benzene (ambi-
toluene associated and xylene associated groupings werent air concentration standard assigned in PoJa&f) from
formed, but these partially overlapped. It held true irrespec- significantly less toxic toluene or xylene (ambient air con-
tive of including measurements from the humidity sensor in centration standard not assigned in Pol§b8l), the DFA
the data set. Based on results obtained it was anticipated thatlassification performance was satisfying. Nevertheless, our
benzene could be successfully recognized from toluene andinear discriminator occasionally gave faulty classification

xylene together, using DFA. of test samples for the two target gases: toluene and xylene.
The modified leave-one-out cross validation was applied

for evaluation of DFA discriminatory power. Classicafold 3.3. Non-linear discriminant analysis—RBF

cross validation, for the data set consistingnafata vectors,

implies that the model is trained separate times on all The next step of advancement in classification methods

data, except for one data vector and a prediction is doneto linear discriminators are non linear classifiers. The non
for that vector. The left out vector is changed in each run. linear discriminant analysis is willingly performed with ra-
The classification errors are accumulated to give the averagedial basis functions (RBF), which is simple and fast to im-
error across trials. plement algorithm. In supervised classification applications

Our modification was proposed due to understanding that RBF is used to construct nonlinear discrimination function
DFA has very limited extrapolation attributes and using ex- for each class. In theory RBF is an absolute classifier i.e. it
treme data vectors for model evaluation in leave-one-out may generate as many classes as the number of input vec-
procedure may unjustifiably suppress the assessment of clastors. On the other hand, this exactness may lead to poor
sifier performance. It was also recognized that extreme datageneralization in pattern recognition probleft4,14,19].
vectors should in principle be included in the training data  RBF approach was implemented using radial basis neural
set, as these determine the space where the developed modektwork. In general, it consists of two layers: a hidden radial
is valid. Therefore in our version of cross validation extreme basis layer, and an output linear layer. The transfer function
data vectors were excluded from testing in leave-one-out of radial basis neuron is
procedure, but these were left in the training set. f= o (lw=plh)?2 ©)

The full data set consisted of 72 elements. In a subset of
24 data vectors associated with one compound eight werewhere w is the weight vector of the neurom, the input
extreme vectors, corresponding to minimum and maximum vector andb is the bias. Each bias in the first layer is set to
compound concentrations at four humidity levels. These 0.8326/spread. This gives radial basis functions that cross
eight extreme vectors for each compound i.e. 24 vectors in 0.5 at weighted inputs afspread. It determines the width
total, were excluded from leave-one-out procedure. Remain-of an area in the input space to which each neuron responds.
ing 16 vectors for each compound i.e. 48 vectors in total Spread should be large enough that neurons respond strongly
were tested in leave-one-out procedure. Therefore our pro-to overlapping regions of the input space. The second, output
cedure modification resulted in following: In every training layer of linear neurons, calculates the linear combination of
run 71 learning vectors (out of 72) were used, but there were outputs from radial basis neurons.
only 48 runs, as there were 48 vectors to be checked if clas- If we present an input vector to a RBF neural network,
sified properly. The DFA classification results for benzene, each neuron in the radial basis layer will output a value
toluene and xylene are summarizedlable 1. according to how close the input vector is to each neuron’s

The performance columns indicated the number of cor- weight vector. Radial basis neurons with weight vectors quite
rectly classified patterns out of 16 test patterns for each different from the input vectop have outputs near zero.
VOC. Apparently benzene was always discriminated cor- These small outputs have only a negligible effect on the
rectly. Most samples of toluene (15/16) and xylene (15, linear output neurons. In contrast, a radial basis neuron with
14/16) were also classified well. The capability of sensor a weight vector close to the input vecipproduces a value
array to distinguish among VOCs was recognized, in spite near 1. If a neuron has an output of 1 its output weights

in the second layer pass their values to the linear neurons
in the second layer. The classification problem is solved

Table 1 successfully if radial neurons are present in the network,
Classification p_erformancg of_DFA in_te_sting mode for complete set of \yhich have weights close to data vectors from each class
sensors and without considering humidity sensor and their linear transformation provides for a response close

voc Performance Performance to the value considered as the identifier of appropriate class
(complete set of sensors)  (without humidity sensor) [15]_

Benzene 16/16 16/16 The RBF neural network employed in the study utilized

Toluene 15/16 15/16 the newrb function implemented in MATLAB. The function

Xylene 15/16 14/16

newrb iteratively creates a radial basis network by adding
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Table 2 Table 3
Optimum classification performance of RBF neural network when input Optimum classification performance of RBF neural network when inputs
features were sensors were principal components calculated for complete set of sensors (six) or
voC Configuration of sensors calculated for set of sensors, without humidity sensor (five)

| I m Y v Vi viI vOC Configuration of principal components

Benzene 14/16 15/16 15/16 16/16 15/16 9/16  15/16 6/6 5/6 416 55 415
Toluene  15/16 16/16 15/16 16/16 16/16 8/16 16/16 Benzene 15/16 16/16 16/16 16/16 16/16
Xylene 16/16 16/16 15/16 15/16 15/16 12/16 16/16 Toluene 16/16 15/16 14/16 16/16 16/16

Spread 0.55 1.35 0.12 0.24 0.4 0.24 0.22 Xylene 16/16 16/16 16/16 15/16 16/16
Spread 1.50 1.30 1.05 0.95 1.15

one neuron at a time. Neurons are added to the networkI:ﬁa££|QC|pal components eliminated were those, explaining minimum

until the sum-squared error falls beneath an error goal or a
maximum number of neurons has been readqi&gl _ ) o

In our network the output layer consisted of one neuron. ers). Therefore, it was not cop5|dered further in five and
The network was expected to respond with (—1) for the four element sensor configurations. TGS825 appeared to be
data vectors associated with benzene, 0 for the data vectordh€ key sensor in our classification problem (VI). When re-
associated with tolune and 1 for xylene. moved from feature set, classification performance rapidly

The RBF was applied to the same data set as did PCA andProke. Remaining sensor configurations resulted in one or
DFA. Modified leave-one-out cross-validation was used to two misclassifications for the whole test data set, which was
obtain the training and classification performance for neural comparable to DFA performance. Further reduction of in-
network, as implemented before for the DFA validation. In Put vectors dimensionality, below four features resulted in
each procedure run, one measurement vector was excludednacceptable classification errors, so these results were not
from 72 element data set and neural network was trained onPresented. _ o
remaining 71 data points. The excluded data vector was then AS We have not fully succeeded in classification of ben-
classified and the accuracy of classification was checked.Z€ne, toluene and xylene using directly sensor responses for
There were 48 runs of leave-one-out cross-validation proce-Neural network inputs, it was proposed to preprocess the data
dure as there were 48 non-extreme vectors to be checked ifVith feature extraction method and apply the extracted fea-
classified properly. Measurements for minimum and max- tures for neural network inputs. We took advantage of prin-
imum concentrations of each compound at four humidity CiPal components calculated previously and we used them
levels (24 in total) were not considered as testing vectors. S the RBF network inputs. The search for an adequate set

It has been reported in literature that once the classifier ©f principal components started from all principal compo-
has been chosen, an optimum classification performance delnents calculated for a set of sensors including humidity sen-
pends on the selection of adequate input featife#t first, sor (six components). Then, all principal components cal-
we investigated the possibility of using sensors responsesCU|at9d_ for a set of sensors without humidity sensor were
as input features. We considered following configurations Used (five components). In the next step, components ex-
of sensors as inputs to the RBENN in search for the best Plaining minimum variance were eliminated from those fea-
classification performance: (I) TGS800, TGS822, TGS824, ture spaces and.so on. A series of sir_nulations were done for
TGS825, TGS880, and TGS883 (six sensors) (1) TGS800, every configuration of input vectors in search for the RBF
TGS822, TGS824, TGS825, and TGS880 (five sensors: hu-SPread, which minimized the number of erroneous classifi-
midity sensor excluded) (Ill) TGS822, TGS824, TGS825, cations and results are reportediiable 3. o
and TGS880 (IV) TGS800, TGS824, TGS825, and TGS880 As listed in Table 3, only one cpnflguratlon of princi-
(V) TGS800, TGS822, TGS825, and TGS880 (V1) TGSS800, pal components used as network inputs allowed for 100%
TGS822, TGS824, and TGS880 (Vi) TGS800, TGS822, Success rate in classification of each single compound: ben-
TGS824, and TGS825 (four element combinations out of Zene, toluene and xylene. It was the_case of four principal
five non-humidity sensors). A series of simulations were components obtained from PCA on five gas sensors (4/5).
done for every configuration of input vectors searching for RBF classification performance for the rest of cases shown
the RBF spread, which minimized the number of erroneous N Table 3was comparable to using five or four sensors as
classifications. The optimum RBF network performance and Neural network input features or applying DFA.
associated spread values, when sensors were considered as
inputs, are reported ifable 2.

None classification was fully successful when sensor re- 4. Conclusions
sponse were used as neural network input features (Table 2).

One could observe that humidity sensor impaired classifi- The recognition task of three single VOCs: benzene,
cation of benzene, toluene and xylene, as the results im-toluene and xylene in air has been investigated. We have
proved after removing it from the feature set (I versus oth- shown that simple measurement system consisting of an
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array of commercially available, cheap TGS sensors, cou- [5] K. Kato, Y. Kato, K. Takamatsu, T. Udaka, T. Nakahara, Y. Matsuura,
pled with appropriate classifier was capable of solving this K. Yoshikf_i\_/vg, Toward t_he realisatio_n of an intelligent gas sensing
classification task. As presented in the article, simple linear scféfnm 7”;"5'(';80)6‘ 1”;2n_"l'gzar dynamic response, Sens. Actuators B
discriminator DFA was 100% successful in recognition of [6] R. Menzel, J. Goshnick, Gradient gas sensor microarray for on-line
benzene, in concentration range 3—73ppm, whatever the  process control, a new dynamic classification model for fast and
humidity of air. This classifier would be sufficient for the reliable air quality assessment, Sens. Actuators B Chem. 68 (2000)
applications targeted at recognition of toxic benzene from ;15p‘;izkir R Shinar L Udoa. M.D. Porter. Artficial intelicence
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